8q80mV7-SHw
Loading...
Download Low Quality - 240p Download Medium Quality - 360p Download HD - 720p

Free Satellite INTERNET DATA LIFETIME !! NO SIM NO WiFi !! - PakTune.pk
Published: 4 days ago By: TEST COMPARISONS

By: TEST COMPARISONSPublished: 4 days ago

686, 033 views

4, 139 Likes   2, 012 Dislikes

HOW TO GET free data HACK internet on android phone 3g 4g wifi
IF PROBLEM VOICE WATCH OTHER VIDEO WITHOUT MUSIC CLICK part 2 THIS LINK : http://www.paktune.pk/watch/g1umlmQVV_k
Vodafone –O2 –T-Mobile – Orange –Three AT&T VERIZON T-MOBILE SPRINT
Free internet for life time no sim data charges 2017
free for android apple samsung windows
MAGNET THEORY use 0.8cm neo magnet strong one
magnetic field is the magnetic effect of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field.[nb 1] The term is used for two distinct but closely related fields denoted by the symbols B and H, where H is measured in units of amperes per meter (symbol: A⋅m−1 or A/m) in the SI. B is measured in teslas (symbol: T) and newtons per meter per ampere (symbol: N⋅m−1⋅A−1 or N/(m⋅A)) in the SI. B is most commonly defined in terms of the Lorentz force it exerts on moving electric charges.
Magnetic fields can be produced by moving electric charges and the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin.[1][2] In special relativity, electric and magnetic fields are two interrelated aspects of a single object, called the electromagnetic tensor; the split of this tensor into electric and magnetic fields depends on the relative velocity of the observer and charge. In quantum physics, the electromagnetic field is quantized and electromagnetic interactions result from the exchange of photons. tutorials In everyday life, magnetic fields are most often encountered as a force created by permanent magnets, which pull on ferromagnetic materials such as iron, cobalt, or nickel, and attract or repel other magnets. Magnetic fields are widely used throughout modern technology, particularly in electrical engineering and electromechanics. The Earth produces its own magnetic field, which is important in navigation, and it shields the Earth's atmosphere from solar wind. Rotating magnetic fields are used in both electric motors and generators. Magnetic forces give information about the charge carriers in a material through the Hall effect. The interaction of magnetic fields in electric devices such as transformers is studied in the discipline of magnetic circuits Although magnets and magnetism were known much earlier, the study of magnetic fields began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field on the surface of a spherical magnet using iron needles.[nb 2] Noting that the resulting field lines crossed at two points he named those points 'poles' in analogy to Earth's poles. He also clearly articulated the principle that magnets always have both a north and south pole, no matter how finely one slices them
Almost three centuries later, William Gilbert of Colchester replicated Petrus Peregrinus' work and was the first to state explicitly that Earth is a magnet.[3] Published in 1600, Gilbert's work, De Magnete, helped to establish magnetism as a science.

In 1750, John Michell stated that magnetic poles attract and repel in accordance with an inverse square law.[4] Charles-Augustin de Coulomb experimentally verified this in 1785 and stated explicitly that the north and south poles cannot be separated.[5] Building on this force between poles, Siméon Denis Poisson (1781–1840) created the first successful model of the magnetic field, which he presented in 1824.[6] In this model, a magnetic H-field is produced by 'magnetic poles' and magnetism is due to small pairs of north/south magnetic poles. (DONT GET SERIOUS YOU STILL READING ALL THAT its just joke video you pranked ALREADY )
Hans Christian Ørsted, Der Geist in der Natur, 1854
Three discoveries challenged this foundation of magnetism, though. First, in 1819, Hans Christian Ørsted discovered that an electric current generates a magnetic field encircling it. Then in 1820, André-Marie Ampère showed that parallel wires having currents in the same direction attract one another. Finally, Jean-Baptiste Biot and Félix Savart discovered the Biot–Savart law in 1820, which correctly predicts the magnetic field around any current-carrying wire.transformers is studied in the discipline of magnetic circuits Although magnets and magnetism were known much earlier, the study of magnetic fields began in 1269 when French scholar Petrus Peregrinus de Maricourt mapped out the magnetic field on the surface of a spherical magnet using iron needles.[nb 2] Not transformers is studied in the discipline of magnetic circuits Frenched out the magnetic field on the surface of a spherical magnet using iron needles.[nb 2] Noting that transformers is studied in the discipline of magnetic circuits Although magnets and magnetism were known much earlier, the ce of a spherical magnet using iron needles.[nb 2] Noting that

SAMSUNG
APPLE
MICROSOFT
NOKIA

Embed Video:
Report form

Related Videos